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Course topics

Static games

Zero-sum games

Potential games

Extensive form games

Dynamic games, dynamic programming principle

@A Dynamic games, dynamic programming for games
Dynamic games, linear quadratic games, Markov games
B Convex games, Nash equilibria characterization

B Convex games, Nash equilibria computation

Auctions

=

Bayesian games

=

Learning in games
Final project presentations

=

=
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Admin matter

= Quiz 1 feedback/discussion
= Timeline: project update: 13:15-14:00,10% , A prve | &
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A Dbrief peak into leader-follower games
~———

= Stoekelber Q ome<
m Sequential game in one-stage with full infofmation

m examples: government setting a policy, society following, security game, ...
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m Recall Quiz 1, Problem 2, part (c): in the zero-sum setting, the second player
was better off

= What about general (non zero-sum case?)
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Review: last lecture

mixXec
P
= Randomized strategies in extensive form games

m Behavioral strategies in feedback games
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Review: last lecture J oAcCER
ly I::)

= Randomized strategies in extensive formgames |~ @ C D
= Behavioral strategies in feedback games . (=
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Review: last lecture

= Randomized strategies in extensive form games
m Behavioral strategies in feedback games
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Relationship between equilibria in extensive form games
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This lecture

Dynamic programming
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Motivation: escape game

START

&)
O

O
® O e o

Player 1 (Alice) is trying to escape, going from the start node to the safe zone
without being intercepted. At every stage of the game, Alice moves 1 step closer
to the safe zone. She can decide to continue on the same row, or instead move
diagonally one row up or one row down.

Player 2 (Eve) is trying to stop Alice. At each stage, Eve is aware of Alice’s current
position, and she is allowed to block one of the three rows. If she selects the row
corresponding to Alice’s next move, she stops her and she wins the game.
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Escape game

1 stage

Consider the case with 3 rows and only 1 stage (that is, only 1 chance for Eve to
stop Alice). What is the corresponding tree? What is the Nash equilibrium strategy

for Alice and for Eve? What is the value of the game?
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Escape game

1 stage

Consider the case with 3 rows and only 1 stage (that is, only 1 chance for Eve to
stop Alice). What is the corresponding tree? What is the Nash equilibrium strategy
for Alice and for Eve? What is the value of the game?

2 stages

Consider the case where there are 3 rows and 2 stages (that is, 2 chances for Eve
to stop Alice). How many LP do we need to solve?
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Escape game

1 stage

Consider the case with 3 rows and only 1 stage (that is, only 1 chance for Eve to
stop Alice). What is the corresponding tree? What is the Nash equilibrium strategy
for Alice and for Eve? What is the value of the game?

2 stages

Consider the case where there are 3 rows and 2 stages (that is, 2 chances for Eve
to stop Alice). How many LP do we need to solve?

3 stages

Consider the case where there are 3 rows and 3 stages (like in the previous
figure). How many LP do we need to solve?

9/33



Escape game

Multi-stage game with
= finite actions
= |arge number of stages (20)

OO0 ®®
® ® O S e

How many “Player 1 information sets” in the tree that represents this game?

START
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Escape game

Multi-stage game with
= finite actions
= |arge number of stages (20)

OO0 ®®
® ® O S e

How many “Player 1 information sets” in the tree that represents this game?

START

Order of: 1 +9 + 81 + ... + 3% linear programs
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Taming the complexity of dynamic games

How can you solve this game for 20 stages?
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Taming the complexity of dynamic games

How can you solve this game for 20 stages?

m Key idea: In every “position”, the probability of escaping (and the optimal
strategy) does not depend on the past decisions.

= We can perform backward induction on the “positions” (states!) rather than
on the game tree.
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Taming the complexity of dynamic games

How can you solve this game for 20 stages?

m Key idea: In every “position”, the probability of escaping (and the optimal
strategy) does not depend on the past decisions.

= We can perform backward induction on the “positions” (states!) rather than
on the game tree.

3 x 20 linear programs instead of 5 x 10°

With more actions available at each stage, the speed up is even larger!
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Taming the complexity of dynamic games

How can you solve this game for 20 stages?

m Key idea: In every “position”, the probability of escaping (and the optimal
strategy) does not depend on the past decisions.

= We can perform backward induction on the “positions” (states!) rather than
on the game tree.

3 x 20 linear programs instead of 5 x 10°

With more actions available at each stage, the speed up is even larger!

We will adapt this idea to dynamic games with infinite action spaces.
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From tree model from loop model

Consider a feedback game in extensive form in
which at each stage k

m Player 1 action: ux € Uy C R”
m Player 2 action: v, € Vx C R”
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From tree model from loop model

Consider a feedback game in extensive form in
which at each stage k

m Player 1 action: ux € Uy C R”
m Player 2 action: v, € Vx C R”

Assumption 1

There exists a state that evolves at each stage

X1 = (X, Uk, Vk)

We can “attach” a state x, to each Player 1 node. e
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From tree model from loop model

Consider a feedback game in extensive form in
which at each stage k

m Player 1 action: ux € Uy C R”
m Player 2 action: v, € Vx C R”

Assumption 1

There exists a state that evolves at each stage
Xk1 = f(Xk, Uk, Vk)

We can “attach” a state xi to each Player 1 node.

Assumption 2

K

outcome: > ~ gk (X, Uk, Vi)
k=1
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From tree model to loop model
char o clen ze s

e %«me

X1 = F(Xe, U, Vi), outcome: > gk (Xk, Uk, Vi)
k=1

The value of a subgame rooted in a Player 1 node at stage k' is then

K
ng(xhuk,vk)

k=k’
and therefore depends only on the value xi attached to that node.
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From tree model to loop model

K

X1 = F(Xe, U, Vi), outcome: > gk (Xk, Uk, Vi)
k=1

The value of a subgame rooted in a Player 1 node at stage k' is then

K
ng(Xk,Uk,Vk)

k=k’

and therefore depends only on the value xi attached to that node.

At each stage, the state is a sufficient representation of the game for all
purposes.
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Information structure

K

Xks1 = F(Xk, Uk, Vi), outcome: J(X1,Us, ... Uk, Vi,...,VK) = ng(xk,uk, Vi)
k=1

There are different assumptions one can make regarding the information each
player uses to compute its action. We will focus on two options:
m Open-loop: uk(x1), vk(x1),fork =1,2,... /K
Note: for a given sequence of actions of each player, the cost depends on the
initial state x4.
m Perfect state-feedback uk(xk), vk(x,c), fork=1,2,...,K
Note: “perfect” highlights players have exact knowledge of x, at each stage. In
practice, players might have same noisy measurements of the state xi (partial
observation) or each player has its own noisy measurement (partial and
asymmetric observation).
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Loop model

For the remainder we consider perfect state-feedback information structure.

X1

xp = f(xg, up, v1)

X2

x3 = f(x2, o, v)

X3
——> e 0@

A by

M (Xl) o1 (Xl)

i }

m Stages become discrete time

b, Ko

72(X2) Uz(Xz)

i }
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Loop model

For the remainder we consider perfect state-feedback information structure.

x1 xo = f(xi, up, v1) 2 x3 = f(x2, U2, Vo) i» cee
ﬁ uy ﬁ %1 ﬁ us ? Vo
Yilxa) | |oilxa) 72(e) | |o2(x)
i } 4 }

m Stages become discrete time

m Strategies (maps from information sets to actions) become Feedback laws
(maps from states to inputs)
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Loop model

For the remainder we consider perfect state-feedback information structure.

X1

X2 = f(Xla uy, Vl)

X2

X3 = f(X27 uz, V2)

X3
——> e 0@

A by

M (Xl) o1 (Xl)

i }

m Stages become discrete time

b, Ko

72(X2) Uz(Xz)

i }

m Strategies (maps from information sets to actions) become Feedback laws

(maps from states to inputs)

m Players have the same information available (simultaneous play)
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Loop model

For the remainder we consider perfect state-feedback information structure.

X1

X2 = f(Xla uy, Vl)

X2

X3 = f(X27 uz, V2)

X3
——> e 0@

A by

M (Xl) o1 (Xl)

i }

m Stages become discrete time

b, Ko

Wz(X2) Uz(Xz)

i }

m Strategies (maps from information sets to actions) become Feedback laws

(maps from states to inputs)

m Players have the same information available (simultaneous play)
m Variations are possible (output feedback, delays, ...)
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Loop model

Just for convenience of representation, we loop it around to get

Xk

X1 = (X, uge, vic)

ﬁuk

ﬁvk

i (Xk)

O'k(Xk)

i

}

16/33



Loop model

Just for convenience of representation, we loop it around to get

XK X1 = Xk, Uk, Vi)

ﬁuk ﬁvk

“Yk(Xk) Uk(Xk)

f f

Basic elements
m Stagesk =1,...,K
m State space x, € X’ and state evolution map f (X, Uk, Vk)
m Action space ux € U, vx € V
m Qutcome function gx (Xx, Uk, Vi)
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Loop model generality

The tree model can be converted to loop model.
The loop model can also define non-tree extensive form games. See for examples
below (Hespanha Figure 14.1b):

1 2 3 4 5 6 7 8 9 10 11 12

Note: in the example above a player may have different costs depending on how
the end of the game is reached
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Feedback game or feedback control?

What are the information sets?

m We assumed feedback games, so xx is known to both Players at stage k
> we attached the state to Player 1 nodes, which are roots of separate subtrees

= We also assume simultaneous play.
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Feedback game or feedback control?

What are the information sets?

m We assumed feedback games, so xx is known to both Players at stage k
> we attached the state to Player 1 nodes, which are roots of separate subtrees

= We also assume simultaneous play.

Is it necessary to have a feedback game?
What are the information sets implied by the loop model?
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Non-zero sum dynamic games

A three-truck platoon

The state x, € R? describes the 2
distances d,E”, d,Ez) between trucks in the
platoon and their speeds s, s

D is the desired distance.

Inputs ux and vk are accelerations.

Followers in the platoon want to minimize their own cost functionals
" (e, uk, vie) = (A = DY? + (d? — D)? + u

9@ (X, Uk, vie) = (AP — DY? + V2
State evolution:

1 1 2 1 1 1
dlE-i—)1:dI£)_T(sl(()_sI(())v S[(<_21:S;(()+Tuk7~~~
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All results extend

The definitions (NE, pure strategies, mixed strategies) extend to the loop model,
and have a “control” interpretation.

Both players know exactly the state x, of the game at the entry of the current stage
k and can use this information to compute their actions (also referred to as perfect
information game)

Subgame-perfect Nash Equilibrium

A strategy is a subgame perfect equilibrium if it represents a NE of every
subgame of the original game.

Subgame-perfect NE strategies (that is, feedback laws) are what in control, in the
context of single player decision-making, we define as optimal feedback laws.
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All results extend

The definitions (NE, pure strategies, mixed strategies) extend to the loop model,
and have a “control” interpretation.

Both players know exactly the state x, of the game at the entry of the current stage
k and can use this information to compute their actions (also referred to as perfect
information game)

Subgame-perfect Nash Equilibrium

A strategy is a subgame perfect equilibrium if it represents a NE of every
subgame of the original game.

Subgame-perfect NE strategies (that is, feedback laws) are what in control, in the
context of single player decision-making, we define as optimal feedback laws.

Uk = k(Xk) Vk = ok(Xk)
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Backward induction -+ (el censicler 0 - sum Clda.me

STEP K: Consider all the infinite subgames rooted in xx:
(Notice the abuse of notation: P1 node / state)

XK1 = f(XK,UK, VK)

with outcome
9k (X, Uk, V)

Determine ~g, ox (functions of xx) such that

9k (X, k(XK ), ok (X)) < Gk (X, Tk (XK ), o (X)) < G (X, Y (XK ), o (X))
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Backward induction

Value function Vi (xx): value of the subgame rooted in xx, that is
Vik(xk) = gk (Xi, 7k (XK ), o (X))
STEP K — 1: Consider all the infinite subgames rooted in xx _+
Xk = F(XKk—1,UKk—1,Vk—1)
with outcome

K
Z (X, Uk, Vi)
—K—

k 1

which we rewrite as
Ik—1(Xk—1,Uk—1, Vk—1) + Vk(Xx)

and therefore

Ik —1(Xk—1, Uk—1, Vk—1) + Vi (F(Xk—1, Uk —1, Vk—1))
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Backward induction

Ik —1(Xk—1, Uk—1, Vk—1) + Vi (F(Xk—1, Uk -1, Vk—1))

Determine ~x_4, ox_¢ (functions of xx_+) that are saddle-points for

Ik —1(Xk—1, k=1 (Xk 1), ok —1 (XK =1)) + Vi (F(Xk =1, 7 —1 (XK —1), ok —1(XK =1)))

and so on, backward until stage 1.
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2-player zero-sum case: backward induction

Value function Vi (xx): value of the subgame rooted in xx, that is

Vik(Xk) = gk (xk)

STEP K — 1: Consider all the subgames rooted in xx_1
Xk = f(Xk—1,Uk—1, Vik—1)

with outcome 1
> glxs,us, vs) + gk (xk)

s=K—1

Find (if they exist) vx_1, ox_1 (functions of xx_4) as the saddle-points for
IXk—1, 7K1 (X 1) o1 (XK 1)) + Vie(F(Xk—1, 761 (Xk 1), 0k -1 (X 1))

If at any iteration, the above does not have a saddle-point equilibrium, the
procedure fails. o~ pure q}\ru\uaj

m There may be other Nash equilibria for the game (consider the dynamic
games given in Figure 7.4 of Hespanha)
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2-player general-sum case: backward induction
Player i’s value function V} (xx): player i’s value of the subgame rooted in xx
Vic(xk) = gk(xk), i =1,2.
STEP K — 1: Consider the subgames rooted in xx_1
Xk = F(Xk—1,Ux—1,VK_1)
with outcome

K—1

Z gi(XSa Us, VS) + g;((XK)

s=K—-1

Find v¢_+, ox_4 that are Nash equilibria for the pair of cost functions

G (Xk—1, k-1 (Xk—1), k1 (Xk—1)) + Vi (F(Xk—1, k-1 (Xk—1), 0k -1 (Xk—1))),
g2(XK—17’YK—1(XK—1) ok—1(Xk— 1))+V2K(f(XK 1,7 —1(Xk—1), ok —1(Xk =1)))

If the Nash equilibria above exist, plug them in and continue backwards. If at any
iteration, a Nash equilibrium does not exist, the procedure fails.

= There may be other Nash equilibria for the game.
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Backward induction in the one-player case

Bellman’s principle of optimality: holds for the one-player case
Tail of an optimal policy is optimal for the tail subproblem.

State dynamics: xx..1 = f(Xk, Ux)
Finite-horizon cost function: >"K"' g(x«, uk) + gk (x«)
Tail subproblem: S5~ g(xk, uk) + gk (X)
Value function at stage k:
K—1

Vi(x) = min Xk, Uk) + 9k (X
1) (U sUge g 5005 UKq);g(k k) = 9 (k)

Value function and optimal policy satisfy the backward recursion:

Vie(X) = gk (x),

Vi(x) = umeiag(x,u) + V£+1 (f(x,u)), I=K—-1,...,0,

v (x) € arg géiﬂg(x’ u)+ Vi (f(x,u)), I=K—=1,...,0.
Single-player: the optimal control in state feedback policy v* = (75, .- -, Vk_1), IS

uniquely characterized by the above recursion and the optimal finite horizon cost
Uk_1) Zf;(; g(Xk, Uk) +gK(XK) is Vo(Xo) for any xp € X

,,,,,
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One-player setting: Principle of Optimality
Tail of an optimal policy is optimal for the tail subproblem

Define the value functions V;, k = 0,1,..., K as follows.
Vik = gk (x)
K—1
Vi(x) = min Zg(xk, uk) + gk (xk), ¥x € X,
(Uk s Ukg1 5+ Uk —1)

k=l

with the sequence {xk}k ~'} starting at x, and satisfying the dynamics
Xi41 = f(Xk, Ux). Show that V(x) = minyeu g(x, u) + Vip1(f(x, u)).

proof:
K—1
Vi) = g™ ZQ Xie, U) + G (Xk)
= m|n 9(xg. uf Z 9(Xg ug) + gk (xk)]
((7 P uK 1) —_

= ")jm 9 (X, Ui) + Vi (F(Xk, Uk))-
k

Above, the first equality holds by the definition of V;, the second from the fact that
9(xk, ux) does not depend on u; | > k, and the last one holds by definition of V4
and the dynamics xx..1 = f(Xx., Uk ). 27/33



Infinite horizon settings

Need to ensure convergent series, one approach: geometrically discounting costs

m infinite horizon discounted cost

= Bellman equation

m Stationary policy
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Computational implications

Consider having K stages and |U;| number of actions available at stage /.

Exhaustive search over all possible selections of actions requires comparing
the costs associated with |U;| x |Uz| x - -+ x |Uk| options.

Dynamic programming requires comparing for a specific value of the state x,
requires comparing |U,| options for each state, in stage /. Thus, the total
number of comparisons is |Us| x |Xi| + |Uz| X [Xo| + - - - + |Uk| x [ Xk].
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Cost-savings example

dummy Tic-Tac-Toe, where there is only one player.

Exhaustive search: 9! = 362880.

Dynamic programming: 19107

H‘QS(N:N\L\ -

TABLE15.1 Computation complexity of solving the one-player Tic-Tac-Toe
game in Example 15.1 using dynamic programming.

Stage Number of x’s Number of o’s 1% Ul 1] % Uy
1 0 0 1 9 9
2 1 0 9 8 72
3 1 1 9Ix8=72 7 504
4 2 1 Qx7=22 6 1512
5 2 2 () x() =736 5 3780
6 3 2 () x () =1260 4 5040
7 3 3 @) x()=1680 3 5040
8 4 3 ) x () =1260 2 2520
9 4 4 Q) x( =60 1 630

10 5 4 () =126 0 0
‘Total number of comparisons needed 19107
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Historical note

m Dynamic programming was developed by
Richard Bellman in the 1950s

m |t is the foundation of stochastic control and
reinforcement learning

= Modern reference: Dynamic programming and
optimal control by Dimitri Bertsekas
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Summary and further reading

= L oop model: allows for a more general class of multi-stage games, and a
more efficient computation of Nash equilibrium

= Backward induction can be used in games under perfect information: where
both players know the state of the game at each stage

m The single-player setting corresponds to a deterministic optimal control
problem

m The multi-player setting corresponds to a deterministic dynamic game

® The result can be extended to stochastic game setting. This setting will
generalize stochastic optimal control.

» Reading: 141.1-14.4, 15.1-15.4 of Hespanha
42
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