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Course topics

1 Static games
2 Zero-sum games
3 Potential games
4 Extensive form games
5 Dynamic games, dynamic programming principle
6 Dynamic games, dynamic programming for games
7 Dynamic games, linear quadratic games, Markov games
8 Convex games, Nash equilibria characterization
9 Convex games, Nash equilibria computation
10 Auctions
11 Bayesian games
12 Learning in games
13 Final project presentations
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Admin matter

Quiz 1 feedback/discussion
Timeline: project update: 13:15-14:00, 10%
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A brief peak into leader-follower games

Sequential game in one-stage with full information
examples: government setting a policy, society following, security game, . . .

Recall Quiz 1, Problem 2, part (c): in the zero-sum setting, the second player
was better o�
What about general (non zero-sum case?)
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Review: last lecture

Randomized strategies in extensive form games
Behavioral strategies in feedback games
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Relationship between equilibria in extensive form games
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This lecture

Dynamic programming
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Motivation: escape game

START

SAFE!

Player 1 (Alice) is trying to escape, going from the start node to the safe zone
without being intercepted. At every stage of the game, Alice moves 1 step closer
to the safe zone. She can decide to continue on the same row, or instead move
diagonally one row up or one row down.

Player 2 (Eve) is trying to stop Alice. At each stage, Eve is aware of Alice’s current
position, and she is allowed to block one of the three rows. If she selects the row
corresponding to Alice’s next move, she stops her and she wins the game.
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Escape game

1 stage
Consider the case with 3 rows and only 1 stage (that is, only 1 chance for Eve to
stop Alice). What is the corresponding tree? What is the Nash equilibrium strategy
for Alice and for Eve? What is the value of the game?

2 stages
Consider the case where there are 3 rows and 2 stages (that is, 2 chances for Eve
to stop Alice). How many LP do we need to solve?

3 stages
Consider the case where there are 3 rows and 3 stages (like in the previous
figure). How many LP do we need to solve?
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Escape game

Multi-stage game with
finite actions
large number of stages (20)

START

SAFE!

How many “Player 1 information sets” in the tree that represents this game?

Order of: 1 + 9 + 81 + . . .+ 320 linear programs
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Taming the complexity of dynamic games

How can you solve this game for 20 stages?

Key idea: In every “position”, the probability of escaping (and the optimal
strategy) does not depend on the past decisions.
We can perform backward induction on the “positions” (states!) rather than
on the game tree.

3 ⇥ 20 linear programs instead of 5 ⇥ 109

With more actions available at each stage, the speed up is even larger!

We will adapt this idea to dynamic games with infinite action spaces.
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From tree model from loop model

Consider a feedback game in extensive form in
which at each stage k

Player 1 action: uk 2 Uk ✓ Rm

Player 2 action: vk 2 Vk ✓ Rn

Assumption 1
There exists a state that evolves at each stage

xk+1 = f(xk , uk , vk)

We can “attach” a state xk to each Player 1 node.

Assumption 2

outcome:
KX

k=1
gk(xk , uk , vk)
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From tree model to loop model

xk+1 = f(xk , uk , vk), outcome:
KX

k=1
gk(xk , uk , vk)

The value of a subgame rooted in a Player 1 node at stage k0 is then
KX

k=k0
gk(xk , uk , vk)

and therefore depends only on the value xk attached to that node.

At each stage, the state is a su�cient representation of the game for all
purposes.
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Information structure

xk+1 = f(xk , uk , vk), outcome: J(x1, u1, . . . , uK , v1, . . . , vK ) =
KX

k=1
gk(xk , uk , vk)

There are di�erent assumptions one can make regarding the information each
player uses to compute its action. We will focus on two options:

Open-loop: uk(x1), vk(x1), for k = 1, 2, . . . ,K
Note: for a given sequence of actions of each player, the cost depends on the
initial state x1.
Perfect state-feedback uk(x1), vk(x1), for k = 1, 2, . . . ,K

Note: “perfect” highlights players have exact knowledge of xk at each stage. In
practice, players might have same noisy measurements of the state xk (partial
observation) or each player has its own noisy measurement (partial and
asymmetric observation).
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Loop model

For the remainder we consider perfect state-feedback information structure.

x2 = f (x1, u1, v1)x1

u1 v1

x2
x3 = f (x2, u2, v2)

u2 v2

x3

�1(x1) �1(x1) �2(x2) �2(x2)

Stages become discrete time

Strategies (maps from information sets to actions) become Feedback laws
(maps from states to inputs)
Players have the same information available (simultaneous play)
Variations are possible (output feedback, delays, ...)
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Loop model

Just for convenience of representation, we loop it around to get

xk+1 = f (xk , uk , vk)xk

uk vk

�k(xk) �k(xk)

Basic elements
Stages k = 1, . . . ,K
State space xk 2 X and state evolution map f(xk , uk , vk)

Action space uk 2 U , vk 2 V
Outcome function gk(xk , uk , vk)
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Loop model generality

The tree model can be converted to loop model.
The loop model can also define non-tree extensive form games. See for examples
below (Hespanha Figure 14.1b):

Note: in the example above a player may have di�erent costs depending on how
the end of the game is reached
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Feedback game or feedback control?

What are the information sets?
We assumed feedback games, so xk is known to both Players at stage k

I we attached the state to Player 1 nodes, which are roots of separate subtrees
We also assume simultaneous play.

Is it necessary to have a feedback game?
What are the information sets implied by the loop model?
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Non-zero sum dynamic games

A three-truck platoon

The state xk 2 R2 describes the 2
distances d(1)

k , d(2)
k between trucks in the

platoon and their speeds s(1)
k , s(2)

k .
D is the desired distance.
Inputs uk and vk are accelerations.

Followers in the platoon want to minimize their own cost functionals

g(1)(xk , uk , vk) = (d(1)
k � D)2 + (d(2)

k � D)2 + u2
k

g(2)(xk , uk , vk) = (d(2)
k � D)2 + v2

k

State evolution:

d(1)
k+1 = d(1)

k � T(s(2)
k � s(1)

k ), s(1)
k+1 = s(1)

k + Tuk , . . .
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All results extend

The definitions (NE, pure strategies, mixed strategies) extend to the loop model,
and have a “control” interpretation.
Both players know exactly the state xk of the game at the entry of the current stage
k and can use this information to compute their actions (also referred to as perfect
information game)

Subgame-perfect Nash Equilibrium
A strategy is a subgame perfect equilibrium if it represents a NE of every
subgame of the original game.

Subgame-perfect NE strategies (that is, feedback laws) are what in control, in the
context of single player decision-making, we define as optimal feedback laws.

uk = �k(xk) vk = �k(xk)

20 / 33



All results extend

The definitions (NE, pure strategies, mixed strategies) extend to the loop model,
and have a “control” interpretation.
Both players know exactly the state xk of the game at the entry of the current stage
k and can use this information to compute their actions (also referred to as perfect
information game)

Subgame-perfect Nash Equilibrium
A strategy is a subgame perfect equilibrium if it represents a NE of every
subgame of the original game.

Subgame-perfect NE strategies (that is, feedback laws) are what in control, in the
context of single player decision-making, we define as optimal feedback laws.

uk = �k(xk) vk = �k(xk)

20 / 33



Backward induction

STEP K : Consider all the infinite subgames rooted in xK :
(Notice the abuse of notation: P1 node / state)

xK+1 = f(xK , uK , vK )

with outcome
gK (xK , uK , vK )

Determine �⇤
K ,�

⇤
K (functions of xK ) such that

gK (xK , �
⇤
K (xK ),�K (xK ))  gK (xK , �

⇤
K (xK ),�

⇤
K (xK ))  gK (xK , �K (xK ),�

⇤
K (xK ))
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Backward induction

Value function VK (xK ): value of the subgame rooted in xK , that is

VK (xK ) = gK (xK , �
⇤
K (xK ),�

⇤
K (xK ))

STEP K � 1: Consider all the infinite subgames rooted in xK�1

xK = f(xK�1, uK�1, vK�1)

with outcome
KX

k=K�1
gk(xk , uk , vk)

which we rewrite as
gK�1(xK�1, uK�1, vK�1) + VK (xK )

and therefore

gK�1(xK�1, uK�1, vK�1) + VK (f(xK�1, uK�1, vK�1))
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Backward induction

gK�1(xK�1, uK�1, vK�1) + VK (f(xK�1, uK�1, vK�1))

Determine �⇤
K�1,�

⇤
K�1 (functions of xK�1) that are saddle-points for

gK�1(xK�1, �K�1(xK�1),�K�1(xK�1)) + VK (f(xK�1, �K�1(xK�1),�K�1(xK�1)))

and so on, backward until stage 1.
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2-player zero-sum case: backward induction

Value function VK (xK ): value of the subgame rooted in xK , that is

VK (xK ) = gK (xK )

STEP K � 1: Consider all the subgames rooted in xK�1

xK = f(xK�1, uK�1, vK�1)

with outcome
K�1X

s=K�1
g(xs, us, vs) + gK (xK )

Find (if they exist) �⇤
K�1,�

⇤
K�1 (functions of xK�1) as the saddle-points for

g(xK�1, �K�1(xK�1),�K�1(xK�1)) + VK (f(xK�1, �K�1(xK�1),�K�1(xK�1)))

If at any iteration, the above does not have a saddle-point equilibrium, the
procedure fails.

There may be other Nash equilibria for the game (consider the dynamic
games given in Figure 7.4 of Hespanha)
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2-player general-sum case: backward induction
Player i’s value function Vi

K (xK ): player i ’s value of the subgame rooted in xK

V i
K (xK ) = gi

K (xK ), i = 1, 2.

STEP K � 1: Consider the subgames rooted in xK�1

xK = f(xK�1, uK�1, vK�1)

with outcome
K�1X

s=K�1
gi(xs, us, vs) + gi

K (xK )

Find �⇤
K�1,�

⇤
K�1 that are Nash equilibria for the pair of cost functions

g1(xK�1, �K�1(xK�1),�K�1(xK�1)) + V1,K (f(xK�1, �K�1(xK�1),�K�1(xK�1))),

g2(xK�1, �K�1(xK�1),�K�1(xK�1)) + V2,K (f(xK�1, �K�1(xK�1),�K�1(xK�1)))

If the Nash equilibria above exist, plug them in and continue backwards. If at any
iteration, a Nash equilibrium does not exist, the procedure fails.

There may be other Nash equilibria for the game.
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Backward induction in the one-player case

Bellman’s principle of optimality: holds for the one-player case
Tail of an optimal policy is optimal for the tail subproblem.

State dynamics: xk+1 = f(xk , uk)
Finite-horizon cost function:

PK�1
k=0 g(xk , uk) + gK (xK )

Tail subproblem:
PK�1

k=l g(xk , uk) + gK (xK )
Value function at stage k:

Vl(x) = min
(uk ,uk+1,...,uK�1)

K�1X

k=l
g(xk , uk) + gK (xK )

Value function and optimal policy satisfy the backward recursion:

VK (x) = gK (x),
Vl(x) = min

u2U
g(x, u) + Vk+1(f(x, u)), l = K � 1, . . . , 0,

�⇤
l (x) 2 argmin

u2U
g(x, u) + Vl+1(f(x, u)), l = K � 1, . . . , 0.

Single-player: the optimal control in state feedback policy �⇤ = (�⇤
0 , . . . , �

⇤
K�1), is

uniquely characterized by the above recursion and the optimal finite horizon cost
min(u0,...,uK�1)

PK�1
k=0 g(xk , uk) + gK (xK ) is V0(x0) for any x0 2 X

26 / 33

l



One-player setting: Principle of Optimality
Tail of an optimal policy is optimal for the tail subproblem
Define the value functions Vl , k = 0, 1, . . . ,K as follows.

VK = gK (x)

Vl(x) = min
(uk ,uk+1,...,uK�1)

K�1X

k=l
g(xk , uk) + gK (xK ), 8x 2 X ,

with the sequence {xk}K�1
k=l } starting at x, and satisfying the dynamics

xk+1 = f(xk , uk). Show that Vl(x) = minu2U g(x, u) + Vl+1(f(x, u)).

proof:

Vl(x) = min
(uk ,uk+1,...,uK�1)

K�1X

k=l
g(xk , uk) + gK (xK )

= min
uk

⇥
g(xk , uk) + min

(uk+1,...,uK�1)

K�1X

k=l+1
g(xs, us) + gK (xK )

⇤

= min
uk

g(xk , uk) + Vl+1(f(xk , uk)).

Above, the first equality holds by the definition of Vl , the second from the fact that
g(xk , uk) does not depend on ul l > k, and the last one holds by definition of Vl+1
and the dynamics xk+1 = f(xk , uk). 27 / 33
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Infinite horizon settings

Need to ensure convergent series, one approach: geometrically discounting costs

infinite horizon discounted cost

Bellman equation

Stationary policy
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Computational implications

Consider having K stages and |Ul | number of actions available at stage l.
1 Exhaustive search over all possible selections of actions requires comparing

the costs associated with |U1|⇥ |U2|⇥ · · ·⇥ |UK | options.
2 Dynamic programming requires comparing for a specific value of the state x,

requires comparing |Ul | options for each state, in stage l. Thus, the total
number of comparisons is |U1|⇥ |X1|+ |U2|⇥ |X2|+ · · ·+ |UK |⇥ |XK |.
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Cost-savings example

dummy Tic-Tac-Toe, where there is only one player.
1 Exhaustive search: 9! = 362880.
2 Dynamic programming: 19107
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Historical note

Dynamic programming was developed by
Richard Bellman in the 1950s
It is the foundation of stochastic control and
reinforcement learning
Modern reference: Dynamic programming and
optimal control by Dimitri Bertsekas
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Summary and further reading

Loop model: allows for a more general class of multi-stage games, and a
more e�cient computation of Nash equilibrium
Backward induction can be used in games under perfect information: where
both players know the state of the game at each stage
The single-player setting corresponds to a deterministic optimal control
problem
The multi-player setting corresponds to a deterministic dynamic game
The result can be extended to stochastic game setting. This setting will
generalize stochastic optimal control.
Reading: 141.1-14.4, 15.1-15.4 of Hespanha
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